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Optimal Trajectories for Vibration Reduction

Based on Exponential Filters
Luigi Biagiotti, Claudio Melchiorri, Lorenzo Moriello

Abstract

In this paper, a new type of trajectories, based on an exponential jerk, is presented along with filters for their

online generation. The goal is to generalize constant jerk trajectories, widely used in industrial applications, in order to

reduce vibrations of motion systems. As a matter of fact, constant jerk trajectories do not assure a complete vibrations

suppression when the damping of the resonant modes is not negligible. The values of the parameters (decay rate and

duration) of the jerk impulses that allow residual vibration cancellation are derived in an analytical way as a function

of the dynamic characteristics of the plant. Comparisons with the well-known input shaping techniques and with

system-inversion-based filters show the advantages of the proposed method in terms of robustness with respect to

modelling errors, smoothness of the resulting trajectory, time-duration of the motion under velocity and acceleration

constraints.

Index Terms

Trajectory planning, residual vibration, dynamic filters, input shaping, multi-segment trajectory, exponential jerk.

I. INTRODUCTION

In many industrial applications, the reduction of machine vibrations may be a relevant issue, as lighter structures

and faster motions are always required. For this purpose, a number of different approaches, based on feedback and

feedforward techniques, can be applied, [6]. However, the most suitable method for machines, which are usually

based on standard control architectures, consists of a proper design (or filtering) of the reference input, which

does not require changes in the control scheme or additional sensors. A well-known technique for minimizing

the residual vibration in point-to-point motions is represented by input shaping [7], [8], [9], based on a train of

impulses of proper amplitude and properly delayed in time which are convoluted with the reference signal. The

most common input shapers are the so-called Zero Vibration (ZV) input shaper, which assures in case of perfect

knowledge of the parameters of the oscillatory system that no residual vibrations occur and the Zero Vibrations and

L. Biagiotti is with the Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Strada Vignolese 905, 41125

Modena, Italy, e-mail: luigi.biagiotti@unimore.it.

C. Melchiorri and L. Moriello are with the Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University

of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy, e-mail: {claudio.melchiorri, lorenzo.moriello}@unibo.it.

May 7, 2015 DRAFT



18

zero Derivative (ZVD) input shaper, which combines complete vibration suppression with higher robustness with

respect to modelling errors. Input shapers have been successfully used in a number of practical applications, such

as reduction of crane oscillations, [10], control of industrial machines like XY stages, [11], vibration suppression

in flexible robotic arms, [12].

Alternative approaches for vibrations reduction by means of reference signal filtering are based on lowpass and

notch filters, expressed either as finite or infinite impulse response filters, but it is worth noticing that they do not

guarantee complete vibration cancellation [6]. A technique that assures residual vibrations suppression exploiting

the dynamic inversion of the flexible plant has been proposed in [13].

More recently, methods for vibration reduction directly based on a proper definition of the reference signal have

been presented, see [14], [15], [16]. These techniques rely on the limitation of jerk impulses, whose duration must

be carefully chosen on the basis of the dynamics characteristics of the resonant system. Constant jerk trajectories

are the simplest example of this approach, but they assure complete vibration cancellation only in case of totally

undumped plants. An improvement has been presented in [16], where asymmetric jerk profiles are used to take into

account the damping coefficient of the flexible system. This approach, which is generalized and improved in the

present paper, will be discussed in Sec. II.

The paper is organized as follows. After a general overview on limited jerk trajectories, filters for their generation

and vibration reduction are presented in Sec. II. The novel filter that provides exponential jerk motion profiles is

illustrated in Sec. III, where the values of the parameters that guarantee the residual vibration suppression are

derived analytically. Then, in Sec. IV the features of the proposed approach are compared with those of alternative

methods for vibration cancellation. The results of experimental tests, conducted to validate this novel method, are

reported in Sec. V. Concluding remarks are provided in Sect VI.

II. MOTIVATIONS AND RELATED WORKS

In order to evaluate the features and the effects of the proposed trajectory generator in vibration suppression,

the motion system shown in Fig. 1 has been considered because of its significance in the industrial field, where

a number of applications can be modeled in this way: a properly controlled electric motor is used to actuate an

inertial load, whose moment of inertia is Jl, by means an elastic transmission lightly damped, characterized by an

elastic constant kt and a damping coefficient bt [1], [2], [3]. By assuming that, because of the control, the actuator

behaves like an ideal position source, i.e. qm(t) � qref (t), only the mathematical model of the system describing

the elastic linkage, which causes vibrations, and the load has been taken into account. It is a SISO (Single Input

Single Output) LTI (Linear Time Invariant) system that can be modelled with the transfer function

Gml(s) =
Ql(s)

Qm(s)
=

2δωns+ ω2
n

s2 + 2δωns+ ω2
n

(3)

with

ωn =

√
kt
Jl
, δ =

bt

2
√
ktJl
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Fig. 1. Lumped constant model of a motion system with elastic linkage (a) and related block-scheme representation (b).
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sT3

Fig. 2. Structure of a standard third order trajectory generator.

where Qm(s) = L{qm(t)} and Ql(s) = L{ql(t)} are the Laplace transforms of the motor and load position,

respectively. Note that the inertia Jm of the motor has no influence on this model. From (3), it follows that the

dynamic relation between the motor position, supposed to be equal to the reference trajectory qref (t), and the

tracking error ε(t) is

E(s)

Qref (s)
=

−s2
s2 + 2δωns+ ω2

n

⇒ E(s)

Q̈ref(s)
=

−1
s2 + 2δωns+ ω2

n

where E(s) = L{ε(t)}, Qref (s) = L{qref (t)} and Q̈ref (s) = L{q̈ref (t)}. In order to limit residual vibrations, it

is therefore necessary that the acceleration profile q̈ref (t) of the reference trajectory has small spectral components

about the resonant frequency of the second order system characterized by (δ, ωn). In [15] these considerations

leaded to a technique for the optimal selection of the parameters of a standard third order trajectory, generated by

means of three linear filters

Mi(s) =
1− e−sTi

sTi

,

as shown in Fig. 2. In particular, parameters
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T1 =
|h|
vmax

, T2 =
vmax

amax

(4)

guarantee that the trajectory from q0 to q1 (h = q1− q0) complies with the velocity limit vmax and the acceleration

limit amax, and the choice

T3 = k
2π

ωn

(5)

where k is a positive integer number (k = 1 is the standard assumption which corresponds to the minimum duration

of the period T3) assures that the spectrum of the trajectory is null for ω = ωn and is therefore able to cancel

the residual vibration when the trajectory is applied to an undumped resonant system (δ ≈ 0). Unfortunately, if

the damping coefficient is not zero, the effectiveness of the filter output (and therefore of standard constant jerk

trajectories) in vibration suppression considerably decreases. In Fig. 3 the tracking errors of a resonant system1 with

δ = 0.0083 and δ = 0.083 when a standard third order trajectory is used are compared. Note that if δ grows, when

the motion stops (that is for t ≥ Ttot = T1 + T2 + T3), the peak value of the oscillations of the mechanical system

accordingly increases. Moreover, also very small values of δ cause vibrations. The effects of damping are analyzed

in Fig. 4, where V%, the percent residual vibration2, is shown as a function of δ. The increasing of vibration’s

amplitude is consequence of the fact that in the design of the filter M3(s) the damping coefficient is not considered.

The only way to take into account δ is in the selection of the time constant T3, and therefore in the duration of

the constant jerk segment, which can be computed as

T3 = k
2π

ωn

√
1− δ2

where, similarly to (5), k is a positive integer number (usually k = 1). Unfortunately this choice mitigates but

does not solve the problem, as shown in Fig. 4. In order to suppress vibrations in systems whose damping is not

negligible, the use of a nonconstant limited jerk profile has been proposed in [16]. In particular, a dynamic filter to

be applied to second order trajectories is devised. The filter produces asymmetric jerk segments, characterized by a

linear decrease, as shown in Fig. 5. The slope of these segments is computed by solving an optimization problem

aiming at minimizing the residual vibration. This approach seems very promising as shown in Fig. 6, where the

same conditions of Fig. 3 are considered: in both cases the residual vibrations are completely suppressed.

However, it is worth noticing that some weak points still exist in this technique:

• A closed-form solution for the computation of the filter parameters is not available and the numerical approx-

imation provided in the paper is valid only for δ sufficiently close to 0. For instance, if δ = 0.45 the trajectory

does not cancel the residual vibration, as shown in Fig. 7.

• For high values of δ, it may happen that the sign of jerk changes within the same segment. As a consequence

the acceleration profiles exhibits undesirable overshoots, see Fig. 5(b).

1The numerical values used in [15] are considered.
2According to [17], percent residual vibration is defined as the ratio between the residual vibration to a step command with and without

shaping filter.
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Fig. 3. Residual vibration due to a third order trajectory q3(t) with h = 30 rad, vmax = 250 rad/s, amax = 5000 rad/s2 , applied to a second

order system with ωn = 260.43 rad/s and δ = 0.0083 (a) and δ = 0.083 (b).
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Fig. 4. Percent residual vibration as a function of damping coefficient δ of a second order filter system whose input is filtered by M3(s).

In order to avoid the above mentioned problems, a shaping technique based on exponential functions is proposed

in the next section.
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Fig. 5. Asymmetric jerk trajectory q2,a for h = 30 rad, vmax = 250 rad/s, amax = 5000 rad/s2 , and δ = 0.083 (a) and δ = 0.45 (b).
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Fig. 6. Residual vibration due to a third order trajectory with asymmetric jerk q2,a(t) under the same conditions of Fig. 3.
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Fig. 7. Residual vibration due to a third order trajectory with asymmetric jerk q2,a(t) when the value δ = 0.45 is considered.
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Fig. 8. Impulse response of filter FJ(s) for negative values of parameter α.
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III. TRAJECTORIES WITH EXPONENTIAL JERK: DEFINITION AND PROPERTIES

Given a second order trajectory q2(t), obtained for instance with the cascade of two filters M1(s) ·M2(s), a

multi-segment trajectory with jerk segments defined by exponential functions can be obtained by adding in the

chain the filter

FJ (s) =
α

eαTJ − 1

1− eαTJ e−TJ s

s− α
(6)

where α and Tj are proper parameters that determine the decay rate and the time duration of impulses composing

the jerk profile. As a matter of fact, the impulse response of FJ(s), shown in Fig. 8, is

fJ(t) =
α

eαTJ − 1
eαt m(t), with m(t)=

⎧⎨
⎩

1, 0 ≤ t ≤ TJ

0, otherwise
.

Therefore when applied to the trajectory q2(t) characterized by a piece-wise constant acceleration, the filter transform

the jerk signal composed by impulsive function ±amaxδ(t− ti) in a sequence of exponential segments, see Fig. 9.

Note that the maximum value of the jerk can be computed as jmax = amax
α

eα TJ−1
.

The filter FJ (s), which does not modify the limit values of velocity and acceleration of the original trajectory

q2(t), can be profitably applied to suppress residual vibrations in those resonant systems that are characterized by

significant damping coefficients in lieu of standard third order trajectories with limited, but constant, jerk.

Theorem 1. The filter FJ(s) in (6) guarantees the complete residual vibration suppression for motion systems with

elastic transmission described by (3) fed by step inputs if

α = −δ ωn (7)

TJ = k
2π

ωn

√
1− δ2

k = 1, 2, . . . (8)

Proof. When a step input filtered by FJ (s) is applied to the system (3), the tracking error between the load position

and the motor position can be computed as

E(s) =
−s2

s2 + 2δωns+ ω2
n

· FJ (s) · 1
s
. (9)

By inverse Laplace transforming E(s) and assuming t ≥ TJ , the analytic expression of residual vibrations descends:

ε(t)=A
[
αe−δωnt

(
cos(Ωt)− cos(Ω(t− TJ))e

(δωn+α)TJ

)

−Be−δωnt
(
sin(Ωt)− sin(Ω(t− TJ))e

(δωn+α)TJ

)]

with A =
α

(eαTJ − 1)(α2 + 2δωnα+ ω2
n)

, B =
αωnδ + ω2

n

ωn

√
1− δ2

and Ω = ωn

√
1− δ2. Therefore, in order to assure

that ε(t) = 0, ∀ t ≥ TJ it is sufficient that

δωn + α = 0 ⇔ α = −δωn

ΩTJ = 2π k ⇔ TJ = k
2π

Ω
= k

2π

ωn

√
1− δ2

, k = 1, 2, . . .

May 7, 2015 DRAFT



25

0 0.05 0.1 0.15 0.2

−2

0

2

x 105
−6000

−4000

−2000

0

2000

4000

6000
−300

−200

−100

0

100

200

300
0

10

20

30

q 2
(t
)

[ra
d]

q(
1
)

2
(t
)

[ra
d/

s]
q(

2
)

2
(t
)

[ra
d/

s2
]

q(
3
)

2
(t
)

[ra
d/

s3
]

t [s]

(a)

0 0.05 0.1 0.15 0.2

−2

0

2

x 105
−6000

−4000

−2000

0

2000

4000

6000
−300

−200

−100

0

100

200

300
0

10

20

30

q 2
e
(t
)

[ra
d]

q(
1
)

2
e
(t
)

[ra
d/

s]
q(

2
)

2
e
(t
)

[ra
d/

s2
]

q(
3
)

2
e
(t
)

[ra
d/

s3
]

t [s]

(b)

Fig. 9. Second order trajectory q2(t) with h = 30 rad, vmax = 250 rad/s, amax = 5000 rad/s2 , and corresponding exponential jerk trajectory

q2,e for ωn = 260.43 rad/s and δ = 0.083 (b).

Note that FJ (s) is a generalization of a standard filters with rectangular impulse response, which produce

piecewise constant jerk profiles. As a matter of fact, when δ = 0 and consequently α = 0, the straightforward

application of the l’Hôpital’s rule leads to

lim
α→0

α

eαTJ − 1
=

1

TJ

and therefore

lim
δ→0

FJ (s)= lim
α→0

α

eαTJ − 1

1− eαTJ e−TJ s

s− α
=

1

TJ

1− e−sTJ

s
.

Differently from asymmetric jerk trajectories, the parameters of FJ (s) that assure the complete vibrations cancel-

lations are easily calculable in the whole range of δ ∈ [0, 1[, and the problems tied to changes in the jerk sign are

never present.

Theorem 2. Third order trajectories with the jerk profile composed by exponential segments satisfying (7) and (8)

guarantee that no residual vibrations are present in the resonant system (3).

May 7, 2015 DRAFT



26

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.01

−0.005

0

0.005

0.01

Res. Vibrations

0

10

20

30

q 2
a
(t
)

[ra
d]

t [s]

Ttot

ε(
t)

[ra
d]

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.01

−0.005

0

0.005

0.01

Res. Vibrations

0

10

20

30

q 2
a
(t
)

[ra
d]

t [s]

Ttot

ε(
t)

[ra
d]

(b)

Fig. 10. Residual vibrations due to a third order trajectory with exponential jerk q2,e(t) under the same conditions of Fig. 3, but with δ = 0.083

(a) and δ = 0.45 (b).

Proof. Third order trajectories with exponential jerk, whose analytical expression is reported in Appendix A, can

be obtained by filtering a step signal of amplitude h (where h is the desired displacement) with the cascade of

linear filters M1(s) ·M2(s) · FJ(s). Therefore, when the trajectory is applied to the system (3), the tracking error

between the load position and the motor position is given by

Eq2e (s) =
−s2

s2 + 2δωns+ ω2
n

·
(
M1(s) ·M2(s) · FJ(s) · h

s

)

= h ·M1(s) ·M2(s)·
( −s2
s2 + 2δωns+ ω2

n

· FJ (s) · 1
s

)

= h ·M1(s) ·M2(s) ·E(s) (10)

where Eq2e(s) is the Laplace transform of the tracking error to an exponential jerk trajectory, and E(s) is the

transform of the error ε(t) to a step input, considered in (9). If the conditions (7) and (8) are met, ε(t) �= 0 only for

t ≤ TJ and, because the filters M1(s) and M2(s) are characterized by a finite length impulse response of duration

T1 and T2 respectively, from (10) it follows that εq2e(t) �= 0 for t ≤ T1 + T2 + TJ and εq3(t) = 0 otherwise. This

means that after the end of the reference trajectory (whose duration is Ttot = T1 +T2 +TJ ) residual vibrations are

completely cancelled.

In Fig. 10 the tracking errors obtained with exponential jerk trajectories are shown by considering resonant

systems with quite different damping coefficients, i.e. δ = 0.083 (a) and δ = 0.45 (b). In both cases residual

vibrations are completely suppressed.

A. Parameter identification and sensitivity to errors

The parameters α and TJ which characterize the filter FJ (s) and therefore the trajectory with exponential jerk

can be easily determined once the damping coefficient δ and natural frequency ωn of the system are known.
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Fig. 11. Residual vibrations caused by the applications of a step input to the system (3).

Alternatively, with standard procedures it is possible to directly deduce their values from the response of the plant

to input signals that cause vibrations. For instance, the residual vibrations consequent to a step input are given by

εstep(t) = − 1√
1− δ2

e−δωnt cos
(
ωn

√
1− δ2 t+ ϕ0

)

where ϕ0 = arctan
(

δ√
1−δ2

)
. Therefore, the ideal values of α and TJ that cancel residual vibrations are respectively

the exponential decay constant and the time period of the oscillation. If a measurement of the oscillation is available,

it is sufficient to detect two subsequent peak values, as highlighted in Fig. 11, and compute the parameters of the

filter as

TJ = t2 − t1

α =
1

TJ

ln

(
p2
p1

)

where the meaning of t1, t2, p1, p2 is explained in the figure. Note that the period of the oscillation and its decay

rate depend on the system, and they do not change also if different type of reference inputs are considered. For

instance, second order trajectories, with discontinuous acceleration, can be used in order to provide the actuator

with a feasible trajectory and to avoid an excessive strain on the plant. In Fig. 12, the residual vibration caused by

a second order trajectory q2(t) and a step signal applied when q2(t) stops are compared: it is clear that the only

difference is given by the amplitude of the oscillations, which does not influence the procedure for the identification.

Since the identification of the optimal values of the filter parameters does not require an explicit knowledge of the

damping coefficient and of the natural frequency of the plant, the robustness of FJ (s) is evaluated by considering

errors in σ and TJ with respect to their nominal values, while the sensitivity with respect to changes in δ and

ωn will be analyzed in Sec. IV in order to compare different types of solutions to the problem of the vibrations

suppression. In Fig. 13 the percent residual vibration V% due to errors in the estimation of the parameters α and
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Fig. 12. Comparison between residual vibrations caused by the application of a step input and of a second order trajectory q2(t) to system (3).

TJ are reported for different values of the damping coefficient and natural frequency of the plant. In particular the

ranges [α̂/2, 2α̂] and [T̂J/2, 2T̂J ] about the nominal values (δ̂, T̂J) are considered. From the figure, it is possible

to conclude that

• the nominal value of the natural frequency of the plant does not influence the robustness of the filter FJ (s)

while the damping coefficient does;

• the choice of TJ is definitely more critical than the choice of α;

• an underestimation of TJ leads to large oscillations; conversely, a value of TJ higher than the nominal one

produce limited vibrations especially for high damping coefficients.

B. Sensitivity to unmodeled dynamics of the plant

According to theorem 1 the filter FJ(s) in (6) and consequently the exponential-jerk trajectory obtained when the

filter is applied to a second order trajectory q2(t), like in Fig. 9, guarantee a complete cancellation of the vibrations

if the plant can be modelled as a second order system such as (3). However, as already noted in Sec. II typical

industrial plants include additional dynamics that may modify the effects of the proposed filter. If the model of the

plant includes an additional stable dynamics ΔG(s), e.g.

G(s) = Gml(s)ΔG(s), (11)
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Fig. 13. Sensitivity of FJ (s) to changes in σ and TJ for different values of δ and ωn of the plant: δ = 0.0083 (1), δ = 0.083 (2) and

δ = 0.45 (3); ωn = 260.53 rad/s (a) and ωn = 2.6053 rad/s (b).

it is possible to show that the properties of FJ (s) remain unaltered. As a matter of fact, because of the linearity

the response of the system (11) to a filtered step input is

Ql(s) = G(s)FJ (s)
1

s
= ΔG(s)

(
Gml(s)FJ (s)

1

s

)
.
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Fig. 14. Response of a resonant system with an additional real pole, G(s) = Gml(s)
1

τ s+1
with ωn = 260.43 rad/s, δ = 0.083 and

τ = 0.0046s, forced by a step input of amplitude h = 30 rad (a) and a step input filtered by the filter FJ (s) (b).
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Fig. 15. Response of a resonant system with an additional real pole, G(s) = Gml(s)
1

τ s+1
with ωn = 260.43 rad/s, δ = 0.083 and

τ = 0.046s, forced by a step input of amplitude h = 30 rad (a) and a step input filtered by the filter FJ (s) (b).

Therefore, the ideal response obtained with the nominal model Gml(s) which, according to Theorem 1, does not

have residual vibration, is simply filtered by ΔG(s). Note that the dynamics ΔG(s) will introduce additional modes

in the response but cannot excite again the resonant mode of Gml(s) damped by the filter FJ (s).

In particular, if ΔG(s) represents a dynamics faster than the nominal model Gml(s) and completely damped,

for instance a real pole with time-constant τ = 1
10

1
δωn

, the response of the system to a step input without and with

the filter FJ(s) is the one shown in Fig. 14: the presence of the additional pole involves an increased duration of

the response that in the nominal case reaches the steady-state condition in TJ seconds, but the residual vibration is

completely suppressed.

Even if the convergency rate of the additional pole is comparable with the rate of the undamped (complex) poles

that characterize Gml(s) the result is similar, that is the use of FJ(s) cancels the oscillations that otherwise would

affect the response. See Fig. 15 where the unmodeled dynamics ΔG(s) = 1
τs+1 with τ = 1

δωn

has been considered.

In case of systems with multiple vibratory modes, a single filter FJ (s) is only able to cancel the oscillation due
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Fig. 16. Response of a resonant system with 2 vibrational modes characterized by ωn,1 = 260.43 rad/s, ωn,2 = 390.6450 rad/s and δ = 0.083

forced by a step input of amplitude h = 30 rad (a), a step input filtered by the filter FJ (s) designed to take into account ω1 (b) and a step

input filtered by two filters FJ(s) which consider both ω1 and ω2 (c).
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Fig. 17. Response of a resonant system with 2 vibrational modes characterized by ωn,1 = 260.43 rad/s, ωn,2 = 390.6450 rad/s and δ = 0.083

forced by a second order trajectory q2(t) with h = 30 rad, vmax = 250 rad/s, amax = 5000 rad/s2 (a), an exponential jerk trajectory q2,e(t)

taking into account ω1 (b) and the trajectory q2,2e(t) of Fig. 18 which considers both ω1 and ω2 (c).

to a specific mode. As a consequence, the use of a filter FJ (s) does not guarantee the complete residual vibration

suppression but it is necessary to consider the cascade of two or more filters, each one related to a specific mode. In

Fig. 16 the step response of a plant characterized by two modes with the same damping coefficient δ but different

natural frequencies ωn,1 and ωn,2, with ωn,2 = 1.5ωn,1 without and with filtering action is shown. A single filter

FJ,1(s) considerably reduces residual vibration but does not cancel all the oscillations. Therefore, a second filter

FJ,2(s) is necessary to completely suppress undesired vibrations with the consequent increase of the delay caused

by the filters. If the two filters are not applied to a step signal but to a second order trajectory q2(t), like in Fig. 17,

the capability of suppressing residual vibrations can be merged with the compliance to kinematic constraints but in

this case the final trajectory is not characterized by a jerk profile composed by tracts of exponential function, see

Fig. 18.
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Fig. 18. Profiles of the trajectory q2,2e(t) obtained by applying to the trajectory q2(t) of Fig. 9(a) two exponential filters with ωn,1 = 260.43

rad/s, ωn,2 = 389.2971 rad/s and δ = 0.083 (b).

C. Digital implementation of the trajectory filter

Since the generation of exponential jerk trajectories is based on the dynamic filters fed by step functions, i.e.

Q2e(s) = M1(s) ·M2(s) · FJ (s) · h
s

it can be easily performed online by modifying the input signal. However, the practical use of the proposed filter

requires its transformation in the discrete time domain (Ts denotes the sampling period) because trajectory planning

is generally performed by digital controllers. This conversion can be obtained with two main techniques, being the

impulse response of FJ (s) of finite length:

1) it is possible to obtain the coefficients of a FIR filter by sampling the impulse response fJ(t) with period Ts;

2) it is possible to deduce the IIR transfer function corresponding to FJ (s) by means of usual discretization

techniques.

In order to obtain a closed form expression of FJ (z) the second approach has been preferred. By Z-transforming

the filter FJ (s) given in (6) and imposing a unitary static gain, the following expression descends

FJ(z) =
1− eαTs

1− eαTs eαNJ

1− eαTs eαNJ z−NJ

1− eαTs z−1
(12)
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1− z−1
FJ (z)

Fig. 19. Structure of the discrete-time filter for exponential jerk generation.

where NJ = round(TJ/Ts). In Fig. 19 the complete structure of the discrete-time filter for online generating

exponential jerk trajectories is shown. Note that in order to guarantee that the sequence q2e(k) of values of the

discrete time-trajectory coincides with the continuous-time profile q2e(t) at sampling times, its expression should

be obtained by Z-transforming the overall chain of continuous filters with a step input, i.e. Q2e(z) = Z {Q2e(s)}.
Therefore, the following expression can be deduced

Q2e(z) =
h

1− z−1
·M1(z) ·M2(z) · FJ (z) · F ′(z) (13)

where F ′(z) is a FIR filter with unitary static gain, whose expression is

F ′(z) = f0 z
−1 + f1 z

−2 + f2 z
−3 (14)

being

f0 =
−2 + 2eρ − 2ρ− ρ2

2(eρ − 1)ρ2

f1 =
4− 4eρ + 2ρ+ 2ρeρ − ρ2 + ρ2eρ

2(eρ − 1)ρ2

f2 =
−2 + 2eρ − 2ρeρ + ρ2eρ

2(eρ − 1)ρ2

and ρ = αTs. By comparing (13) with the discrete-time generator of Fig. 19, it comes out that the difference between

the two output sequences is only caused by the filter F ′(z), whose main effect consists in a time delay of two

sampling intervals3. By neglecting this filter, a time anticipation is therefore introduced in the generator, as shown in

Fig. 20, where the step response of the continuous-time filter and the sequences obtained with the exact discretization

and with the approximated generator of Fig. 19 are reported. In order to emphasize the approximation error the

sampling period has been intentionally assumed very large (Ts = 0.1 s). In this way it is possible to appreciate that,

besides the time anticipation, the discrete-time filter provides an excellent approximation of the desired trajectory.

Obviously, when the sampling period decreases, the difference between q2e(t) and the approximated q2e(k) tends

to vanish.

A last remark concerns the computation complexity of the proposed trajectory generator. As illustrated in Tab. II,

where the difference equations of the trajectory generator of Fig. 19 are reported, at each sampling time the

3Since the sampling frequency ωs is generally chosen by assuming that ωs ≥ 10ωn, the parameter ρ = −δωn
2π
ωs

results quite small in

magnitude, i.e. −0.6283 ≤ ρ ≤ 0. As a consequence, the range of variation of the coefficients defining F ′(z) is rather limited (0.1412 ≤

f0 ≤ 0.1667, 0.6666 ≤ f1 ≤ 0.6656, 0.1667 ≤ f2 ≤ 0.1932). Moreover, f1 is considerably higher than other coefficients and therefore a

rough approximations of F ′(z) can be obtained by neglecting f0 and f2, and assuming that that F ′(z) ≈ z−2.
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Fig. 20. Comparison between the trajectories produced by exponential jerk trajectory filters defined in the continuous- and discrete-time domain

with T1 = 1 s, T2 = 0.6 s (Ni = ceil(Ti/Ts)), TJ = 0.2 s and α = −3.

q1(k) = q1(k) + a1
(
r(k)− r(k −N1)

)

q2(k) = q2(k) + a2
(
q1(k) − q1(k −N2)

)

q2e(k) = a3 q2e(k) + a4
(
q2(k)− a5 q2(k −NJ )

)

TABLE II

DIFFERENCE EQUATIONS CORRESPONDING TO THE TRAJECTORY GENERATOR OF FIG. 19 (THE VALUES OF THE CONSTANT PARAMETERS ai

ARE a1 = 1
N1

, a2 = 1
N2

, a3 = eαTs , a4 = 1−eα Ts

1−eα Ts eα NJ
, a5 = eαTs eαNJ ).

computation of the output of the cascade of filters requires a total of 6 additions and 5 multiplications. If the filter

F ′(z) is considered, 2 more additions and 3 multiplications must be performed. Moreover 3 memory areas are

necessary, in order to store the last N1 values of q1(k), the last N2 values of q2(k) and the last NJ values of

q2e(k). Note that the trajectory generation based on the cascade of dynamic filters is considerably more efficient

than the direct calculation of the closed form equations of the trajectory reported in Appendix A, which, besides a

larger number of additions and multiplications, requires 2 divisions and the computation of an exponential function

depending on t.

When a reference signal r(k) composed by several step functions starting at generic time instants is applied

to the trajectory generator of Fig. 19, the profiles shown in Fig. 21 are obtained. If the time-instants in which a

new trajectory is triggered comply with the conditions reported in [15] a complex motion profile q2e(t) that meets

velocity and acceleration constraints and cancels residual vibrations is obtained. Note that in this case the jerk

profiles is no longer composed by tracts defined by an exponential function because of overlaps between adjacent

jerk impulses. However, the capability of suppressing vibrations remain unaltered, as shown in Fig. 22 where the

residual vibrations obtained with a second order trajectory q2(k) and with q2e(k) are compared.
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Fig. 22. Comparison between the residual vibration caused by the application to a resonant system Gml(s) of a second order trajectory q2(k)

(ε2(t)) and the corresponding exponential jerk trajectory q2e(k) shown in Fig. 21 (ε2e(t)).
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IV. COMPARATIVE ANALYSIS WITH ALTERNATIVE TECHNIQUES FOR VIBRATION SUPPRESSION

As mentioned in the introduction, the main techniques for complete residual vibration suppression based on a

proper filtering of the reference signal are input shaping and inversion of the plant dynamics. A first important

difference between these techniques and the proposed filter FJ (s) is that they do not increase the smoothness,

i.e. the order of continuous derivatives, of the filtered input. They are generally applied to reference trajectories

with bounded velocity and acceleration and therefore at least C1, that is with continuous first-order derivative, and

provide as output a trajectory of the same class in case of input shapers or even of lower class if filters based on

system inversion are applied. In Fig. 23 the reference signals obtained by filtering the second order trajectory q2(t)

with a ZVD input shaper and with a system-inversion-based filter are shown. Note that the trajectory q2,zvd(t)

remains C1, i.e. with discontinuous acceleration, and is compliant with the desired bounds imposed to the original

trajectory q2(t). The trajectory q2,inv(t) filtered by the inverse dynamics of the plant becomes C0, because some

discontinuities appears in the velocity profile. Moreover the bounds on the trajectory derivatives are not met anymore,

see the acceleration profile of q2,inv(t). This behavior of the system-inversion-based filter can be rather troublesome,

since as shown in Fig. 1 the system Gml(s) that causes vibrations only models the load and the elastic transmission

of a more complex system which includes also the actuator, supposed to be able to perfectly track the reference

trajectory qref (t). Therefore the simplified scheme of a standard motion system with elastic linkage results as

in Fig. 24. Unfortunately, any kind of actuation system is characterized by physical limitations on velocity and

acceleration and if these bounds are not met the trajectory becomes unfeasible. Moreover, the requirement of

perfect tracking relates the smoothness of the reference trajectory, supposed Cp, with the relative degree r of the

linear time-invariant system describing the actuation system [4], i.e

p ≥ r − 1.

As a consequence, in case of an electric actuator, with r = 3, the reference position for the motor4 must be at least

C2. This implies that if an input shaping filter is used for vibrations suppression, the second order trajectory q2(t) is

not sufficient but a C2 function is required. With an inverse dynamics filter a C3 trajectory must be used. Conversely,

the proposed filter FJ (s), that increases the smoothness of the input trajectory, needs a simple C1 function, like the

4Note that the transfer function of a standard DC motor is

Ga(s) =
Qm(s)

V (s)
=

Ki

LaJms3 + (RaJm +BmLa)s2 + (KbKi +RaBm)s

where Ki is the torque constant, Kb the back-emf constant, Ra the armature resistance, La the armature inductance, Jm the rotor inertia, Bm

the viscous-friction coefficient and V (s) denotes the Laplace transform of the input voltage [5]. A feed-forward control that in nominal case

assures perfect tracking is

Vff (s) = G−1
a (s)Qref (s) =

(
LaJm

Ki

s3 +
RaJm +BmLa

Ki

s2 +
KbKi +RaBm

Ki

s

)
Qref (s)

which corresponds to

vff (t) =
LaJm

Ki

q
(3)
ref

(t) +
RaJm +BmLa

Ki

q
(2)
ref

(t) +
KbKi + RaBm

Ki

q
(1)
ref

(t).

The control action vff (t) is feasible, that is vff (t) < ∞, only if q(3)
ref

(t) is limited and accordingly the reference trajectory qref (t) ∈ C2.
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Fig. 23. Reference signals obtained by filtering the second order trajectory q2(t) of Fig. 9(a) with a ZVD input shaper (a) and with the inverse

dynamics of the plant (b).

Gml(s)
ql(t)qm(t)Controlled motorqref (t)

(vmax, amax)

Fig. 24. Complete model of a motion system with elastic linkage.

function q2(t) which leads to the exponential jerk trajectory of Fig. 9.

From a functional point of view, input shapers, system-inversion-based filter and the proposed filter FJ (s) guarantee

the complete vibration suppression in nominal conditions. However, since all these techniques rely on a precise

modeling of the plant, it is necessary to evaluate their robustness with respect to errors in model parameters, i.e.

δ and ωn in (3). To this aim, the different approaches have been evaluated by considering the percent residual

vibration of system (3) as a function of the errors in the estimation of its parameters. Since the inverse-dynamics

filter requires a continuous input function, the comparative analysis has been conducted by using the trajectory

q2(t) as test function in lieu of the standard step signal. By means of extensive simulations, the curves reported in
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Fig. 25. Percent residual vibration as a function of the damping coefficient δ about the nominal value δ̂ = 0.081 (a) and δ̂ = 0.45 (b).
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Fig. 26. Percent residual vibration as a function of the ratio ωn/ω̂n, where ωn is the actual natural frequency of Glm(s) and ω̂n is the

nominal value used to define the filter, for δ = 0.081 (a) and δ = 0.45 (b).

Fig. 25 and Fig. 26 have been obtained. For the sake of clarity, the variations of parameters δ and ωn with respect

to their nominal values are considered separately. In Fig. 25 the percent residual vibration is shown as a function

of δ. Since the nominal value δ̂ influences the results, two different values have been considered in order to show

the behavior of the different filters for small and large damping coefficients (δ̂ = 0.081 and δ̂ = 0.45 respectively).

For the natural frequency, the nominal value ω̂n = 260.53 rad/s has been assumed, but it is worth noticing that the

percent residual vibration does not depends on this particular value.

The relationship between actual value of natural frequency and percent residual vibration is shown in Fig. 26, where

the ratio ωn/ω̂n has been considered. Also in this case two different values of δ have been taken into account.

These curves highlight that for all the filters the value of the natural frequency is significantly more critical than
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the damping coefficient. The proposed filter FJ (s) is characterized by an intermediate robustness between ZV and

ZVD input shapers, and results much more robust than system-inversion-based filters. Moreover, for high values

of ωn, FJ (s) offers the best performances, see Fig. 26. The filter M3(s), that produces constant jerk trajectories,

provides similar results for small values of δ (see Fig. 26(a)), but cannot reduce residual vibrations when the

damping coefficient is significantly different from zero.

Finally, a fair comparison between these methods requires also an estimation of the time-delay that the filters

introduce and of the consequent increase of the motion duration. With this respect, it is well-known that an higher

robustness of Input Shapers is obtained by increasing the number of impulses that form the shapers and accordingly

the delay introduced in the motion generation.

System-inversion-based filters do not cause any delay in the reference signal tracking. However, the need for

smoother trajectories implies higher durations of the motion with respect to lower order trajectories, the bounds on

velocity, acceleration, and higher derivatives being equal. Input shapers, like ZV and ZVD filters, introduce in the

system time-delays similar to that caused by the FJ (s) filter; in particular the additional delays are TJ/2 for ZV

and TJ for ZVD, but also in this case the need for higher order input trajectories with respect to the filter FJ (s)

may increase the total duration of the motion.

V. EXPERIMENTAL VALIDATION

In order to experimentally test the proposed method the setup of Fig. 27 has been arranged. This simple system

is characterized by a linear motion but the dynamic model described in Sec. II remains valid. It is composed by a

linear motor, LinMot PS01-37x120, whose slider is connected to an inertial load by means an elastic transmission

obtained with a coil spring. The load is placed on a linear guide in order to guarantee the axial alignment with the

motor slider and to reduce static friction. The control system is based on the servo controller LinMot E2010-VF that

performs the basic current control, while the position control (based on a PID controller and a feedforward action)

has been implemented on a standard PC with a Pentium IV 3 GHz processor and 1 GB of RAM, equipped with a

Sensoray 626 data acquisition board, used to both communicate with the servo controller and acquire the sensors

signals. The position of the motor is measured by an incremental encoder with a resolution of 1μm integrated in

the stator, and the monitoring of vibrations is obtained via a load cell connected between the slider and the elastic

transmission. As a matter of fact, the force fk exerted by the spring is proportional to the error ε between motor

position and load position, and, if the inherent damping of the transmission is considered, like in Fig. 1, force fk

is simply a scaled, low-pass filtered version of ε.

The real-time operating system RTAI-Linux on a Debian SID distribution with Linux kernel 2.6.17.11 and RTAI

3.4 allows the position controller to run with a sampling period Ts = 500μs. For the design of the control scheme

and of trajectory generator, the MatLab/Simulink/RealTime Workshop environment has been used.

In Tab. III the main characteristics5 of the mechanical system are reported. The value of the internal damping bt

5The symbols refer to the model of Fig. 1(b).
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Fig. 27. Experimental setup.

Parameter Symbol Value Unit

Slider mass Jm 0.599 kg

Load mass Jl 0.623 kg

Spring stiffness kt 6490 N m

TABLE III

MOTION SYSTEM PARAMETERS.

is unknown, but it can be easily deduced from the parameters α and TJ of the filter FJ (s). The value of these

parameters is obtained as described in Sec. III-A but the oscillation is induced by physically blocking the motor

slider and applying an initial deformation to the spring. In Fig. 28, the force fk(t) recorded during an experiment

is shown together with the force of the identified system characterized by δ̂ = 0.0246 and ω̂n = 101.3724 rad/s,

which correspond to α̂ = −2.4958 and T̂J = 0.0620 s (indeed, several tests have been performed and the mean

value of the parameters has been assumed). Note that the value of ωn found in the experiments is consistent

with the theoretical value
√
kt/Jl = 102.0653 rad/s. The main difference between the responses of real and ideal
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Fig. 28. Oscillations of the system of Fig. 27 used for the identification of the parameters of filter FJ(s).
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Fig. 29. Residual vibrations induced in the system of Fig. 27 by the application of a second order trajectory q2(t).

system lies in the manner in which the oscillation vanishes, see Fig. 28 for t ≥ 0.9 s: the model’s output goes

to zero asymptotically while the real system suddenly stops probably because of the (unmodeled) static friction.

Moreover, besides the vibratory dynamics Gml(s) the model of the real system should include the poles of the

controlled actuator, but since the control feedback has been designed with a very high bandwidth these poles have

been neglected. As a matter of fact, as already noted in Sec. III-B unmodeled poles faster than the mechanical

dynamics that induces vibrations do not modify significantly the results of the application of the filter FJ (s) and

of the exponential jerk trajectories.

In Fig. 29, the response of the system to second-order trajectory q2(t) used as basic motion profiles is reported.

This trajectory, characterized by a total displacement h of 30 mm, has been obtained by means of the first two
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filters in Fig. 19 with Ni = Ti/Ts, i = 1, 2, being T2 = 1.5 T̂J = 0.0930 s and T1 = 2T2 = 0.1860 s. With these

parameters, the maximum velocity and the maximum acceleration are vmax = 0.1613m/s and amax = 1.7343m/s2

respectively. Obviously the behavior of the system at the end of motion (highlighted in the plots with the white

background) is very similar to that of the uncontrolled system of Fig. 28.

When the filter FJ (z) is added and the exponential jerk trajectory is applied to the resonant system, the residual

vibration is considerably reduced, see Fig. 30(a). However, it is not completely cancelled. Note that the residual

vibration seems not due to additional unmodelled (linear) dynamics of the plant since its period is exactly T̂J .

Instead, the cause must be probably sought in nonlinear phenomena (i.e. the static and Coulomb friction on the

motor slider) and external disturbances (such as the cogging which is present in the linear motor) affecting the

system. These effects are probably not completely compensated by the motor controller and the actuator does not

behave like an ideal position source.

In order to evaluate the benefits of the proposed method in real applications, its behavior has been compared with

those of the alternative approaches mentioned in Sec. IV, which should lead to a complete cancellation of residual

vibrations. In particular, in Fig. 30(b) the response of the experimental setup to the trajectory q2(t) filtered by a

ZVD input shaper is shown, and in Fig. 30(c) the result with the inverse dynamics filter is reported. The actual

capabilities of the exponential jerk trajectory and of the input shaper in vibrations suppression are comparable,

while the filter based on the dynamics inversion shows a lower robustness with respect to the above mentioned

non-idealities: the level of vibrations decreases with respect to those obtained with the direct application of q2(t)

only for a positive displacement of the motor, while it remains practically unchanged if the motion occurs along

the negative direction6.

Note that the vibrations reduction shown in Fig. 30 with respect to Fig. 29 is marginally caused by the increase of

the time-duration of the trajectory because of the additional filters. As a matter of fact, both for the exponential jerk

trajectory and for the trajectory filtered by the input shaper the duration of the motion is Ttot = T1 + T2 + T̂J =

0.3410 s. Therefore, in order to perform a more precise comparison, a second-order trajectory q2(t) with the same

total duration (that is T2 = 0.1137 s T1 = 2T2 and Ttot = T1 + T2 = 0.3410 s) has been applied to the mechanical

system. The result, illustrated in Fig. 31, confirms that the reduction of the residual vibration obtained with a simple

time-scaling is rather limited if compared with the proposed approach, the overall duration of the motions being

equal.

Finally, the robustness of the filter FJ with respect to errors in the parameter TJ has been experimentally tested. In

Fig. 32(a) and Fig. 32(b) the responses of the system to the exponential jerk trajectory computed with the parameter

TJ equal to 0.5T̂J and 1.5T̂J are reported, and confirm that an underestimation of TJ makes the filter FJ less

effective while an overestimation of TJ lead to small residual vibrations. Conversely, with ZVD input shapers only

the nominal values of the parameters produce good performances. In fact, both underestimation and overestimation

of TJ cause large residual vibrations, see Fig. 32(c) and (d). Note that in the test reported in Fig. 32(b) the residual

6Several tests have been performed but the result was always the same
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vibration is even smaller than the vibration obtained with the nominal value of parameter TJ and shown in Fig. 30(a).

This is probably due to the fact that the higher duration of the trajectory, i.e. Ttot = T1+T2+1.5T̂J = 0.3808 s, with

respect to the nominal trajectory, for which Ttot = 0.3410 s, mitigates the above mentioned non-ideal phenomena,

like friction and cogging, and allows the motor to better track the given profile qref (t).
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Fig. 30. Comparison between residual vibrations induced in the system of Fig. 27 by the application of an exponential jerk trajectory (a), a

second order trajectory filtered by a ZVD input shaper (b) and a second order trajectory filtered by the system inverse dynamics (c).
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Fig. 31. Residual vibrations induced in the system of Fig. 27 by the application of a second order trajectory q2(t) with T2 = 0.1137s.
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Fig. 32. Residual vibrations induced in the system of Fig. by an exponential jerk trajectory with TJ = 0.5T̂J (a) and TJ = 1.5T̂J (b), and

by a second order trajectory filtered by a ZVD input shaper with TJ = 0.5T̂J (c) and TJ = 1.5T̂J (d).
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VI. CONCLUSIONS

The use of exponential jerk trajectories, which can be efficiently generated by filtering standard trapezoidal

trajectories, allows to considerably reduce the vibrations level in motion systems with elastic transmission. Ideally,

the proposed filters, characterized by the parameters α and TJ which can be easily deduced from the response of the

resonant system, is able to completely cancel the residual vibration. Experimental tests have demonstrated that the

proposed approach has performances similar to well-known input shaping techniques and system-inversion-based

filters, but compared to these methods it guarantees a superior robustness with respect to errors in the parameters

estimation. Moreover, this technique offers considerable advantages in terms of smoothness of the motion profiles:

if the input trajectory is Cp (e.g. p = 1 for trapezoidal velocity trajectories) the filtered trajectory will be Cp+1 and

the peak values of the first p+ 1 derivatives of the original trajectory will not be exceeded by the new trajectory.

In this way, it is possible to design exponential jerk trajectories compliant with kinematic constraints on velocity

and acceleration and with vibrations cancelling capabilities.

APPENDIX A

ANALYTIC EXPRESSION OF A SEVEN-SEGMENT TRAJECTORY WITH EXPONENTIAL JERK

The expression of a point-to-point third order trajectory compliant with constraints on the maximum velocity

vmax and acceleration amax, and with jerk impulses characterized by a duration TJ and a decay rate α is

q2,e(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1(t, α), 0 ≤ t < TJ

q2(t, α), TJ ≤ t < T2

q3(t, α), T2 ≤ t < T2 + TJ

q4(t, α), T2 + TJ ≤ t < T1

h− q3(Ttot − t,−α), T1 ≤ t < T1 + TJ

h− q2(Ttot − t,−α), T1 + Tj ≤ t < T1 + T2

h− q1(Ttot − t,−α), T1 + T2 ≤ t ≤ Ttot
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where h is the total displacement from initial point (supposed to be zero) to the final point, Ttot = T1 + T2 + TJ

denotes the total duration of the trajectory (which starts at t0 = 0), and

q1(t, α) = amax

2− 2 eα t + α t (2 + α t)

2α2(1 − eαTJ )

q2(t, α) = amax

[
2 + α t(2 + α t)

2α2(1− eαTJ )
−

−eαTJ (2 + α(2 + α(t− TJ))(t− TJ))

2α2(1 − eαTJ )

]

q3(t, α) = amax

[
2 eα(t−T2) + αT2 (2 (1 + α t)− αT2)

2α2(1− eαTJ )
−

− eαTJ (2 + 2α(t− TJ) + α2(t− TJ)
2)

2α2(1− eαTJ )

]

q4(t, α) = vmax

2+2αt−αT2 − eαTJ (2+α(2t−2TJ−T2))

2α(1− eαTJ )

The time intervals T1 and T2 must be computed according to (4) with the additional conditions

T1 ≥ T2 + TJ , T2 ≥ TJ

which guarantee that all the seven segments composing the trajectory are present.
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